Besteht die künstliche Intelligenz die Führerscheinprüfung?

Mercedes-Benz will künstliche Intelligenz in der Autoproduktion erproben. Bosch betont, das Auto von heute sei der wahre Streber, denn die KI lerne drei Mal schneller als der Mensch am Steuer. Beim Musikstreaming, der Navigation oder bei digitalen Sprachassistenten ist sie längst an Bord und das autonome Fahren ist ohne KI nicht denkbar. Müssen wir uns an den Beifahrer gewöhnen, der alles besser weiß und alles besser kann als wir?

Prof. Dr. Simon Burton, Scientific Director Safety Assurance, Fraunhofer IKS. München, weiß, für autonomes und hochautomatisiertes Fahren ist die KI von entscheidender Bedeutung, „denn KI-basierte Systeme sorgen dafür, dass autonome Fahrzeuge mit den komplexen Szenarien im Straßenverkehr umgehen können.“ Autonome Fahrzeuge müssen dafür ihre Umwelt wahrnehmen und angemessen auf diese reagieren. So ist es beispielsweise wichtig, dass Fußgänger jederzeit fehlerfrei erkannt werden und daraus die richtige Reaktion abgeleitet wird.

Zu jedem Zeitpunkt sicher?

Doch beim Einsatz von KI in autonomen Fahrzeugen stellt Professor Burton die Frage: „Ist KI nachweislich sicher genug für den Einsatz in einem sicherheitskritischen Bereich wie dem Straßenverkehr?“ Schließlich könne man bei KI-Systemen nicht einfach erkennen, wie sie zu einem Schluss kommen und schon leichte Änderungen beispielsweise bei den Eingangsdaten führen zu einem komplett anderen Ergebnis. „Im Straßenverkehr müssen die Entscheidungen der KI aber nachvollziehbar sein und die funktionale Sicherheit muss zu jedem Zeitpunkt gewährleistet sein“, fordert der Fraunhofer-Mann.

Künstliche Intelligenz weist heute im Automobil und in vielen Anwendungsbereichen ihre Fähigkeiten nach: in der Industrie bei der Steuerung von Geräten und Maschinen, in der Robotik, bei Automatisierungsprozessen bis hin zur Medizin, wo sie Ärzte insbesondere in der Diagnostik wertvolle Unterstützung bietet. Oder in Form von Gesundheits-Apps, die für manche Menschen bereits zum Lifestyle gehören. Gleichzeitig nehmen die Diskussionen über die Grenzen, aber auch die Risiken von KI weiter Fahrt auf.

KI realistisch bewerten

Vor diesem Hintergrund rätseln Wissenschaftler derzeit, wie die Fähigkeiten von ChatGPT realistisch zu bewerten sind. Prof. Barenkamp verweist hierzu auf eine Studie, die jüngst in der akademischen Welt einige Aufmerksamkeit erregte und auch Grundlage des Essays von Celeste Biever ist: Ein Team um Melanie Mitchell vom Santa Fe Institute hatte dem Sprachmodell GPT 4 Aufgaben vorgelegt, bei denen farbige Blöcke in einem Raster anzuordnen waren. Aus mehreren Beispielen sollte auf die zugrunde liegende Regel geschlossen und vorhergesagt werden, wie sich die Blöcke als nächstes verändern.

„Die meisten Menschen lösen solche Aufgaben mühelos“, erklärt Prof. Barenkamp. GPT 4 hingegen schaffte nur ein Drittel in einer Kategorie richtig und erreichte in anderen teils nur drei Prozent. Andere KI-Systeme, die speziell für solche Rätsel entwickelt wurden, kamen demnach zwar auf bessere, aber immer noch deutlich schlechtere Ergebnisse als Menschen.

Die Studie zeige, dass es den künstlichen Systemen aktuell noch schwerfalle, zugrunde liegende Konzepte zu erkennen und daraus zu lernen, resümiert Experte Barenkamp. Eines der Kennzeichen menschlicher Intelligenz sei aber gerade die Fähigkeit zur Abstraktion und zum Transfer auf neue Situationen, betont er.

Anders lernen als der Mensch

Woran liegt es, dass KI-Systeme den Menschen in solchen Basisfähigkeiten noch so deutlich unterlegen sind, während sie in Konversationen zum Teil mit überraschender Eloquenz verblüffen? Zur Erklärung führt Prof. Barenkamp an, dass KI-Anwendungen eben anders lernen als Menschen. So werden große Sprachmodelle wie GPT 4 zum Beispiel mittels Durchforsten gewaltiger Mengen an Texten trainiert. Dabei erkennt die KI statistische Korrelationen zwischen Wörtern, wie Prof. Barenkamp erläutert, um bei einer Eingabe das wahrscheinlich nächste Wort zu ermitteln. Menschen hingegen erleben schon als Kind konkrete Erfahrungen mit Objekten und Situationen, bauen ihr eigenes Abbild – Repräsentation – der Welt auf und entwickeln kognitive Fähigkeiten wie Abstraktionsvermögen und logisches Denken.

Dies kann aus Sicht von KI-Experte Barenkamp erklären, warum GPT 4 zwar Texte, wie von Menschen verfasst, in hoher Qualität auszugeben in der Lage ist, aber an einfachen visuellen Tests scheitert: Weil das Training in diesem Fall ausschließlich auf Sprache beruht und nicht auf realen Erfahrungen sowie dem notwendigen Verbinden von Sprache mit konkreten, erlebten Dingen. Manche Forscher vermuten daher, dass KI-Systeme Wörter auch nicht so „verstehen“ wie wir Menschen, da sie dadurch keine echte Begrifflichkeit der Welt entwickeln können.

Fazit

Also gilt sarkastisch: Die KI kann uns viel erzählen, aber die Vorgänge im Verkehr könnten ihr noch zu komplex sein. So werden Autofahrer KI vermutlich in den nächsten Jahren eher im Bereich Komfort bei Infotainment und Assistenzsystemen erleben. Der Weg zum vollautomatischen Fahren ist wohl doch länger als die Verantwortlichen von San Francisco glaubten, die den Einsatz von autonom fahrenden Taxis erlaubten und nun der Taxi-Automaten mit Staus kämpfen müssen. (aum)