TU Graz – Autonome Fahrsysteme
Die Zukunft ist schon angekommen: (Teil-)Autonome Autos sind mit automatisierten Systemen wie Brems- oder Spurhalteassistenten heute bereits auf unseren Straßen unterwegs. Als zentraler Fahrzeugbestandteil muss die Software dieser Systeme kontinuierlich und verlässlich hohe Qualitätskriterien erfüllen.
Franz Wotawa vom Institut für Softwaretechnologie der TU Graz widmet sich mit seinem Team und in Zusammenarbeit mit der AVL-Gruppe „Cyber-Physical Testing Systems“ den großen Herausforderungen dieser Zukunftstechnologie. Der Sicherheitsgarantie durch die automatische Generierung umfangreicher Testszenarien für Simulationen und der systeminternen Fehlerkompensation durch ein adaptives Regelverfahren.
Keine Millionen Testkilometer
Die Forschenden arbeiten an innovativen Methoden, mit denen ungleich mehr Testszenarien simuliert werden können als bisher. Ihr Ansatz: Statt Millionen von Kilometern zu fahren nutzen sie Ontologien zur Beschreibung der Umgebung von autonomen Fahrzeugen. Ontologien sind Wissensbasen für den Austausch relevanter Informationen innerhalb eines maschinellen Systems. So können beispielsweise Schnittstellen, Verhaltensweisen und Beziehungen einzelner Systemeinheiten miteinander kommunizieren.
Im Fall von autonomen Fahrsystemen wären das etwa die Einheiten „Entscheidungsfindung“, „Verkehrsbeschreibung“ oder „Autopilot“. Das Projektteam hat mit grundlegenden Detailinformationen über Umgebungen in Fahrszenarien gearbeitet und die Wissensbasen mit Details zum Aufbau von Straßen, Kreuzungen und Co gespeist. Daraus lassen sich mathematisch Szenarien ableiten, die in Simulationen das Verhalten der automatisierten Fahrsysteme testen. AVL stellt hierzu einen der weltweit führenden Testfallgenerierungsalgorithmen zur Verfügung.
Schwachstellen entdeckt
Im Rahmen des EU-Projekts AutoDrive haben die Forschenden diese Ontologien mittels zweier Algorithmen in Eingabemodelle für kombinatorische Tests umgewandelt, die in weiterer Folge mithilfe von Simulationsumgebungen ausgeführt werden können. So hat zum Beispiel ein Bremsassistenzsystem in einem bestimmten Testszenario zwei aus verschiedenen Richtungen kommende Personen nicht gleichzeitig erkannt und mit dem eingeleiteten Bremsmanöver eine der beiden Personen schwer getroffen. „Das heißt, man findet anhand unserer Methode Testszenarien, die man einerseits in der Realität schwer testen kann und die man andererseits vielleicht auch gar nicht im Fokus hat“, so Wotawa.
Kompensation interner Fehler
Autonome Systeme und besonders autonome Fahrsysteme müssen in der Lage sein, sich im Fall von Störungen oder geänderten Umweltbedingungen selbst zu korrigieren und gegebene Zielzustände jederzeit verlässlich erreichen. „Wenn wir bereits heute verwendete teilautomatisierte Systeme wie den Tempomat betrachten wird schnell klar: Bei Fehlern kann und wird immer der Fahrer, die Fahrerin eingreifen. Bei vollständig autonomen Fahrzeugen ist das keine Option mehr, daher muss das System selbst entsprechend handeln können“, führt Franz Wotawa aus.